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\j A group of quadrature formulae for end-point singular functions is presented generalizing classical
end-point corrected trapezoidal quadrature rules. The actual values of the end-point corrections are
obtained for each singularity as a solution of a system of linear algebraic equations. The algorithm
is applicable to a wide class of monotonic singularities and does not require that an analytical
expression for the singularity be known; only the knowledge of its first several moments and the
ability to evaluate it on the interval of integration are needed. 7( '
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27, -1 <y <1

1. Introduction

When a numerical quadrature rule for a class of singular functions is derived, it is usually
a generalization of some technique for numerical integration of non-singular functions. [3, 4,
5] use Richardson-style extrapolation to construct quadrature rules for singularities of the form
[7, 8, 9] generalize the Euler-Maclaurin expansion for integrands with certain
kinds of singularities. In the present paper, the end-point corrected trapesoidal quadrature rules
are generalized. While the standard end-point corrected trapezoidal rules are usually derived by
means of the Euler-Maclaurin formula, their generalizations for singular functions are obtained in
this paper as solutions of certain systems of linear algebraic equations (see Section 2). The rate
of convergence of resulting quadrature rules is investigated analytically for a fairly broad class of
monotonic singularities in Sections 3 - 5. However, our numerical experiments indicate that these
quadratures can be effectively applied to a considerably broader class of singularities than the ones

investigated in Sections 3 - 5 (see Section 6).

The principal advantage of the approach of this paper is its generality (see Sections 3 - 6).
Also, since almost all integration weights are equal, it is convenient from the programming point
of view (see, for example, [2]). An obvious drawback of the algorithm is the fact that there is no
simple analytical expression for the corrections; they have to be evaluated numerically for each
type of singularity, and for each subdivision of the interval of integration, unless the singularity is

either of the form log(z), or of the form z7.

2. End-point corrected trapesoidal rules for singular functions

5 - R
A right-end point corrected trapezoidal rule T is defii.ed by the formula t’
Lo
fla) | & 3
12() = k- (L2 5 1) 4 8- Y05 S(amoinn) (2.1) e
=1 J=1

where f : (0,1] — R! is an integrable function, n, m are a pair of natural numbers, h = 1,;, zi = %, for
..y @) is a finite sequence of real numbers. We will say that the rule
T? is of right-end order k > 1 iff for any f € c*+1{0, 1] such that f(0) =

i=1,2,...,n,and a = (a;, a2,

there exists ¢ > 0 such that

with ¢, ¢ € c* [0,1], and s € ¢(0,1] an integrable function with a singularity at zero. For a finite

sequence 3 = Pm). we will define the mapping Tj4 : ¢(0.1] — R! by the formulae

(613 ﬂ2s seny

1 [of
[T (f) - /o f@e)dt |< .

It easily follows from the Euler-Maclaurin formula that for any k > 1, there exists a vector o =
(a1, ..., ax) such that the right- end order of the formula T is equal to k (see, for example, [6]).
Suppose now that the function f : (0,1} — R! is of the form

f(z) = é(z) - s() + ¥(2)

ms(f) = T2 +h-Y_Bif(xi)-

=]

Xi=i'_si= 1,2,

ey MM,

7(0) = ... = f®(0) =

(2.2)

(2.3)

(2.4) r

(2.5)

.....
.............




We will use expressions T, with appropriately chosen a, 8 as quadrature formulae for for functions
of the form (2 3), and the followmg construction provides a tool for finding S once a is given.

For a pair of natural numbers k,n, we will consider the following system of linear algebraic
equations with respect to the unknowns 87,5 = 1,2, ey 2k

Z X787 / g - T3 (=) (2.6) '

J=l

fori=1,2,....,k,and

X () By = [ sta)-#dz - 7200) - #1 (26)

Jj=1

for i = k+1,k+2,...,2k. We will denote the matrix of the system (2.6), (2.7) by A®*, its right-hand
side by Y and its solution (87,85, ..., 85;) by 87. When there is no danger of confusion, we will
omit some of the indices, and write (8, 82,..., f2¢) and B or 8", instead of (87, A7, ..., 5%;) and A7
respectively. The use ef expressions T, as quadrature formulae for functions of the form (2.3) is
based on the following theorem.

Theorem 2.1.

Suppose that the systems (2.6), (2.7) have solutions 8" = (87, 87, ..., fq;) for all sufficiently
large n, and that the sums

2k _ .
> (81)? (2.8)
J=l

are bounded uniformly with respect to n. Suppose further that the function f : (0,1] — R! is ‘

defined by (2.3). Then there exists such ¢ > 0 that

| T2 (f) - / st |< 5 29)

for all sufficiently large n.
Proof.
Applying the Taylor expansion to the functions ¢,y at x = 0, we obtain

f(z) = P(f)(z) + Re(¢)(z) - 8(z) + Re(¥), (2.10)

where
(i) Eow® _
PN = o) 380D 4 300 (2.11)
=0 =0
and Ri(4), Re(¥) are such functions [0,1] — R! that
Ri(6)(0) = (Re(9))'(0) = ... = (Re(#))*)(0) = 0, (2.12)
Re(#)(0) = (Re($)(0) = - = (Re())(0) = 0. AU
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Page 3
Substituting (2.10) into the left-hand side of (2.9), we obtain
1

| Tom(f) - /o f(t)de |<

|2 P - [ ' P(f)(e)de |

+ | Tope (Re(0) - 8) + Re(¥))

1
- f., (o(z) - Re(d)(2) + Re(¥)(2))dz | .

(2.14)

Due to (2.6), (2.7), 1
T2 (PU) - [ PU)(a)dz =0, (2.15)

and we have

1
T30 - [ )t
|72 Ra(@) - [ ofe) - Rulo)(a)i |
0

TR - [ ' Re(w)(2)dz | (2.16)

2k
+1 S (Re(#)(x5) - 8(x;)

J=1
+ Re(¥)(x,)) - B7 | -
Now the conclusion of the theorem follows from (2.2) (2.8), (2.12), (2.13), and Lemma A.2.

3. Convergence rates for singularities of the forms z” and log(z)

For the remainder of this paper, é1, 2, ..., 62 will denote functions (0,1} — R! defined by the

formulae )
¢i(z) = 27! for i=1,2,...k, (3.1)

¢i(z) =21 8(z) fori=k+1,k+2,..,2k (3.2)
Lemma 3.1.

If s(z) = z" with 4 a real number such that 0 <| 4 |< 1 then the functions ¢1,62,....¢2
constitute a Chebychev system on the interval (0,1] (i.e. the determinant of the 2k x 2k -matrix
B defined by the formula B;; = ¢;(t;) is non-zero) for any 2k distinct points t,1z,..., 12 on that
interval. .

Proof.

For a finite sequence p;, ps, ..., p2x of 2k real numbers, P will denote a mapping (0, 1] — R!
defined by the formula

2k
P(t)=3_pi- 6i(t)- (3.2)

=]
We will prove the lemma by showing that if ¢;,13,..., 2 are distinct points on the interval (0, 1] and
P(t;) = 0 for all i = 1,2,...,2F then all 2k coefficients py, pa, ..., P2k are equal to zero. By repeated
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application of the Rolle theorem, we conclude that there exist k distinct points y;, ¥3, ..., ¥ on the
interval (0, 1) such that P(¥)(y;) = O for all i = 1,2, ..., k. Differentiating (3.2) k times, we obtain

w

»
o
x
”

k
PB(y) = g™ 3 prgi - wi -y (3.3)

=]

2

Yy,
{rx R
S 3

¥
" Tl
Sa . .

with wy= (i = 1+9)(1 = 2+49)...(i = k+ ) , and it is clear that w; # O forall i = 1,2,....,k . Now
it follows from Lemma A.3 that

)
e
T -
e

Phel = Prez = ... = py = 0. (3.4)
Substituting (3.4) into (3.2) and applying Lemma A.3 again, wesee that py =pr = ... = p; = 0.
Theorem 8.1.

If s(z) = 27 with 0 <| 7 |< 1 then the convergence rate of the quadrature rule T,. is at least
k.

Proof.

It immediately follows from Lemma 3.1 that the matrix of the system (2.6), (2.7) is non-
singular. We rescale the system (2.6), (2.7) by multiplying its { — th equation by (n - k)*=! for
i=1,2,..k and by (n-k)"~1=%+7 for i = k + 1,k + 2, ..., 2k, obtaining the system of equations

 1dz - T2(1
1087420 B3 4 .t (2k)° - g (:-k)oa( ) |

. g o
1 Br+2 B0+ ...+ (2k) - = (o “(:. k)7;a (=)

_ g a*tdz - T(z*1))
. (n . k)k-l

1 - n
1787 +27 65 + o (2k)7 - By = Uo -"'"(1:. k;a (=)

| S 41
1 1 1 gn _ Up 2™1dz - T(a™1))
1741 P 4 27 gR 4 L+ (28)H - B = n- k)-n-al

1182kl gn g (2K)FL B

(3.5)

--------------------------------------------------------------------

_ _ _ ( lzq+k-ld1._Tn(zv+k-l
R B . DPNC M RS Lkl &% ki)

with respect to the unknowns 83,52, ..., 85,. and we will denote the matrix of the system (3.5)
by By , and its right-hand side by Z' . Obviously, B; is independent of n, and |Z]| is bounded
uniformly with respect to n due to Lemma A.2. Consequently, the solution of (3.5) is bounded
uniformly with respect to n, and due to Theorem 2.1, the convergence rate of T, is at least k.

The proofs of the Lemma 3.1 and Theorem 3.1 can be repeated almost verbatim with s(z) =
log(z) instead of s(z) = 27, resulting in the following theorem.
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Theorem 3.2.
If s(z) = log(z) then the convergence rate of the quadrature rule T ,. is at least k.
4. Convergence rates for more general singularities
Theorem 4.1.
Suppose that the function s : (0,1} — R? is such that
. z-8(x) _
ll-{% s(z) ¢ (4.1)

with 0 <| @ |< 1. Then for sufficiently large n, the matrix A™ of the system (2.6), (2.7) is
non-singular, and the convergence rate of T;7,. at least k.

Proof.

The proof below effectively consists of approximating s(z) on the interval [x1,x2s) by the
function § = -‘3}-1 z* and using the Theorem 3.2.

We rscale the system (2.6), (2.7) by multiplying its i —th equation by (n-k)"~! fori = 1,2, ..., k,
and by (n-k)"~*! fori =k + 1,k +2,...,2k , thus obtaining the system

.87+ 2055+ .+ (k) gy = L 102 TEU)
Oogp ez gt i pp= z‘(i:'k)fi"(z))

....................................................................

....................................................................

11 gp 42kl gng L (2K)F) . B = (o 271z = To(a*1))

(n- R)F)
1°-%-ﬂi‘ 2°. :g’; B+
o UL BLAD
o (28)1 "(’;’1‘)’ o= o ""ef(’:;_?ﬂ(;‘-s(z)))

....................................................................

....................................................................

k- s(Xl) n k= 8()(2) n
1%-1. -Br +2 l';()'(—)'ﬂg'i'

8(x1)

. (2k)EL. 88(();“)) Bor =

(fOl k=1 . g(z)dz — TP (z*-! - s(z)))
s(x1) - (n- k)k=1
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3 -
}.‘\ whose matrix we will denote by BJ. Due to Lemma A.2, the right-hand side of (4.2) is bounded
X for sufficiently large n, and by applying Lemma A.5, it is easy to see that
5 Bi =B+ (43) ‘
-_ with (67).k = 1,2,... a sequence of 2k x 2k matrices such that limp—q ||6F]| = 0. Now it follows
X from Lemma A.4 that for sufficiently large n,||(BJ)~!|| is uniformly bounded. Thus, the solution v
?, of (4.2) is uniformly bounded for sufficiently large n, and due to Theorem 2.1, the convergence rate
of Topa is at least .
: Theorem 4.2.
'.:: Suppose that k > 1 and a function s : (0, 1] — R! is such that
. 1.. s(z) is integrable on the interval (0, 1].
2..8(z) = ;(“-‘ is integrable on the interval (0, 1].
;f 3.. s is monotonic in some neighborhood of 0.
, 4.. The system (2.6), (2.7) has a unique solution for all sufficiently large n.
5.. The convergence rate of Tya is at least k.
Then the convergence rate of the quadrature rule Ty 4. is at least k — 1.
Proof.
Again, we start with rescaling the equations (2.6), (2.7). We define a diagonal 2k x 2k -matrix
D by the formula .
Dii= — 4.4
" s(x) (4.4)
i-j_-. fori=1,2,...,2k, and the theorem easily follows from the observation that A:-"’ =AM .D. .
:" Observation 4.1.
:-: The combination of the Theorems 3.1, 3.2, 4.1, 4.2 permits one to apply end-point corrected
e trapezoidal quadrature rules to a fairly wide variety of singular functions, including linear combi-
' nations of powers of z, products of powers of x with log(z), etc. Further genaralizations of the
- quadrature rules T4 are discussed in Section 7.
L. e
:-j:: 5. Asymptotic behaviour of correction coefficients as n — oo o
An obvious drawback of the expressions T, as practical quadrature rules is the fact that 0
3 the weights 87, 8%, ..., A3, have to be determired for each value of n by solving a system of linear B
algebraic equations (albeit a small-scale one). In this section. we eliminate this problem for the o
v cases s(z) = z” and s(z) = log(z) by constructing a new set of correction weights Aj, Az, ..., Aqt SANE
independent of n, and such that the quadrature rules T, are still of order not less than &. SN
L Lemma 5.1. Lui
E Suppose that @ = (aj,ag,....ay,) is such that the right-end order of the quadrature formula E_,;
o T? is m. Then for any a > 0 there exists ¢ > 0 such that oo
::_: . 1 . 1 ¢ ;.:-':::
X |99 @20 - [ ) - 0 (18 - [ e 1< (5.1) R
g for any integer p,g such that p< g¢. v F—
l.':'o '-‘.ﬂ
e P
3 %
bed ;:\::1
< A
‘]
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] Proof.
[ From the formula (2.1), it is easy to see that
¢
‘ 1
2 T9(2%) - / sdz = o + z( ey 2 J(I=it !y / 2°dz
X x-l Jtl ? o
A,
, = (D) Z( “)e+ (- Z J(ELE e
P e Tim (5.2)
: p-j+1l, g-j+1 ! .
. “‘E aj(————)") + = +‘Z aj(——)° - / z%dz
: B q % o q 0
- —j+1, 1 :
| @ A 1 @it e Ly [,
P Bt a 2p 0
with R, defined by the formula
Rpo= (- 2 (5 ) + —)
q q l-p+1
_ : (5.3)
-E (q J+1 lzaj(p-J"rl)a_/ z%dz
- Due to Euler-Maclaurin formula,
Pim-a (Lim+a 1
‘ = O - R S = — — 5.4
- By =02 (™) = 0( - ) (5.4
1€
- and we conclude that
Fy 1
'1 = (Pya+1
, 13(e) - [ #tdz= B @) - [ atde) 0k ) (55)
. which is equivalent to (5.1).
Theorem §.1.
Suppose that k,m are two natural numbers such that k £ m — 1 and that a = (a3, 02,...,am)
is such that the quadrature rule T2 is of right-end order m. Suppose further that s(z) = z" with
0 <| v |< 1, and that the coefficients 87, 87, ..., 7, are defined as solutions of the system (2.6),
(2.7). Then
1.. There exists a limit
lim 8" =\ (5.6)
1= 0C
for each 1 = 1,2....,2k.
2..forall 1 = 1.2,...,2k, !
S | 87 = X |= 0=, (57)
: 3.. A; do not depend on m, as longasm > k + 1.
. 4.. The quadrature formulae T, are of order at least k.
p—

L

r'c
['"! ‘

v
-
:'

.

SARN

T Tmi
."f?.‘.(.: ¢
VXN

'y~
v

-ty % s Tt AR REN
FLARIPAY B R A PR

%, %yt % LA
W R NN "

oS
4.

4
o
Lo

Th

L
o,
7

)

3
ot}
»

R
,ll'.l" 7y
""

-

2t el
r_‘

LANr N T 4
o 220 A

)
g

. v

LIRCI
e

ot et

AR




wr

L MAEMMACMAEIE L  IRRAR

" g

v’

™

-
.
.

Page 8

Proof.

Suppose that p,g are two natural numbers, and p < g. Obviously,

8P = (Bg)"l .z:
B = (By) - 2§ (58)
p -8 = B;\(Z] - Z}).

Due to Lemma 5.1, there exists ¢ > 0 such that
¢
i2Z - Z{ll < (;,.'3), (5.9)

and by combining (5.8) and (5.9), we see that for some 5 > 0,

¢
pm-k :

1% - B9)) -

(5.10).

Since 8!, 8%, ... constitute a Cauchy sequence, tiey converge to some limit A = (A;.Az,..., A2),
which proves 1., and 2.,3.,4., easily follow from (5.6),15.10),(5.1), and (3.5).
The proof of the following theorem is a repetition almost verbatim of the proofs of the Lemma

5.1 and Theorem 5.1. __::‘1
Theorem 5.2. i::i.’l:

If under the conditions of the Theorem 5.1, the singularity s(:) = z7, is replaced with the :y','-’.;
singularity 8(z) = log(z), the conclusions 1. - 4. of the Theorem 5.1 remain cozrect. f;_‘

Remark 5.1. .

For singularities of the forms z7,log(z), Theorems 5.1, 5.2 reduce the quadratures T7,. to a
more “conventional” form

1 n-l m 2k
[o fz T =k (L f@) + B 4 h- S amflense) +h- 00 x) (58)

R . e .
o ., P .
LR A Y et e
PR i .
PR + B
e i -

=) =1 J=1 ‘: 1

where f is defined by (2.3), h= L.z, =i -h with i = 1,2, ...,n,x; = j - § with j = 1,2,..., 2k, and R
the coefficients A; are independent of n. %‘ i
Remark §.2. "—1
Theorems 3.1, 3.2, 4.1, 4.2, 5.1, 5.2 establish that under certain conditions the order of = k

the quadrature rules T7,..T7, is not less than k. where 2k is the length of the vectors " =
(B, B2, ....8%5:) A = (A1. A2, ... A2x). Somewhat more detailed versions of the proofs of these the-
orems show that the order of these quadratures always lies between & and /- + 1. and is in some
cases equal to & + 1. In the examples presented in the following section. we note the cases when
the latter situation occures.

6. Numerical Results

Algorithms have been implemented for cvaluating the quadratures T,. under the conditions
of the Theorems 3.1, 4.1, 4.2, and the quadratures T, under the conditions of the Theorems 5.1,
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5.2. The implementation of the algorithm for evaluating the quadratures T, p~ is completely stright-

forward. After evaluating the matrix A™* and the right-hand side Y** of the system (2.6). (2.7),
the system is solved by means of a LINPAK Gaussian elimination subroutine, and the resulting
correction weights are used in the quadrature formulae T4, ( see formula (2.4)).

In order to evaluate the coefficients Aj, A,...A2; for singularities of the forms z7,log(z), we
start with a right-end corrected trapezoidal rule T of order 20, obtained by means of the Euler-
Maclaurin formula. Under these conditions,

| 87 = X 1< Ol —=p) (6.)

for all ¢ = 1,2,...,2k (see Theorems 5.1, 5.2}, and for reasonable k, the convergence of 8" to ); is
almost instantaneous. We used n = 64 and REAL *16 arithmetic to obtain 15 significant digits
presented in the examples below.

In the Tables 1 - 6, the coefficients Ay, A2,...Ag; are listed for singularities of the forms
log(z),z%,z‘%,:z%,z"f,z“l%, and k = 2,3,4. It is clear from these tables that the correction
weights Ay, A2, ...A2; grow rapidly as k increases, causing increased round-off errors and making the
use of large k impractical in actial computations.

In many cases, k = 3 appears to be a reasonable compromise, resulting in roughly 4-th order
convergent rules, and not involving unreasonably large correction weights. Combining such a rule
with a standard 4-th order end-point corrections at the right end of the interval (see, for example,
[1]) we obtain the following quadrature formula

1 n 6
[ @z = b (st + 3o as ) = 252 = (s (@nms) = 47(zne) 4 81(ea))) (62)

iml J=1

with h = %,z,- =t1-hfori=1,2,..,n,and x; = %‘j for j = 1.2....,6. For the six singularities
listed above, the coeflicients Aj, Ag,...\¢ can be found in the middle columns of the Tables 1 - 6. In
the Table 7, convergence results are presented for some of the rules T]; and T, with k = 3 and T}
a standard 4-th order end-point correction. Column 1 of this table contains the numbers of nodes
into which the interval [0, 1] was discretized. In all cases, the integrand was of the form

J(z) = (8in(23z) + cos(24z)) - s(z) + (sin(21z) + cos(22z)), (6.3)

with columns 2, 3, 4 containing the relative errors for the rule T2, with s(z) equal to log(z),zi,

and z~% respectively. Columns 5. G contain relative errors for the rule T g« with s(z) equal

to z-% . log(z) + =% and (log(z))? respectively. Finally. column 7 contains relative errors for

the standard 4-th order end-point corrected trapezoidal rule applied to the function (sin(21z) +
cos(22z)), presented here for comparison.
The following observations can be made from Table 7. and are typical for the quadratures

T:A'T(':ﬂ"'

1.. In all cases. the speed of convergence is roughly the same as for the end-point corrected trape-
zoidal rule applied to the function (sin(21z) + cos(22r)) (column 7).

2.. For the singularities iog(z) and 23, the rules T7, display a typical 4-th order convergence.

3.. In columns 3 - 5, the convergence is somewhat erratic. especially for 3(z) = z=1%, in which
case the rule seems to fail after n = 320. In order to clarify the situation, the 4-th column of
the Table 7 was extended with n = 2560,5120, 10240.20480. The extension is shown in Table
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8, from which it is clear that the bottom part of the column 4 in Table 7 should be described
as erratic convergence, rather than a failure to converge.
.. It appears from the 5-th column of Table 7 that the rule T7,. converges quite well for s(z) =

(log(z))? , even though this singularity is not covered by any of the theorems of the present
paper. This has been repeatedly observed when the singularity s is monotonic, and in such
cases a version of Theorem 4.1 is usually fairly easy to prove.

Generalizations and conclusions
The algorithm of the present paper admits several strightforward generalizations.

.. There are classes of singularities not covered by this paper for which some versions of Theorems
3.1 and/or 5.1 can be fairly easily proven. The convergence of the quadrature rule for one of
them ( (log(z))? ) is demonstrated in the preceeding section.

.. Correction nodes X, X2, ..., x2& do not have to be equispaced. A different distribution of nodes
could possibly reduce absolute values of the correction weights Aj, Ag,...A2x and By, B, ...82;,
thus improving the convergence. However, such specialized choice of correction nodes would
have to be performed separately for each singularity s.

.. The quadratures can be easily modified to handle functions of the form

f(2) = v(x)+ Y _ 6i(x) - si(2) (7.1)

i=1

where v, ¢1, ¢2, ..., ¢m are smooth functions, and s;,s2, ..., 5m are several different singularities.
However, it is easy to see that the absolute values of the weights A" tend to grow very rapidly
as m increases, and the author doubts the practical usefulness of such rules with m > 2.

.. Quadrature rules Tg,, Toga have fairly obvious analogues in two and three dimensions. How-
ever, the proofs of multi-dimensional versions of Theorems 3.1. 3.2, 4.1, 4.2, 5.1 are somewhat
more involved than those of their one-dimensional counterparts. These results will be reported
at a later date.
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k=2
0.160129841535717E+01
-.338255852191949E+-01
0.362788846443413E+-01
-.134662835787181E+01

k=2
0.107622636973350E+01
-.147247373014210E+-01
0.138293501775035E4-01
-.486687657341754E+-00

=2
0.333895462377735E+01
-.103691855551396E+02
0.123881739056139E+02
-.485794297425160E+-01
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Table 1
Correction Weights for the Singularity s = log(z)

=3
0.222876601846009E+01
-.123121207006261E+02
0.315796599730867E+02
-.384039159001043E+02
0.226735045911525E+02
-.526589398196889E+01

Table 2

k=3
0.140373389574362E+01
-.610626975465971E+01
0.145821441189467E+02
-.163961527863182E+02
0.895228275571686E+01
-.193573822942934E+01

Table 3

k=3
0.515686238420012E+01
-.371802541857231E+-02
0.105027804788073E+03
-.138820513091881E+03
0.879943166414350E+02
-.216782165361041E+-02

k=4
0.309348340177712E+01
-.310178837674079E+02
0.136205915590327E4-03
-.314747480872421E+03
0.421505412761263E+03
-.328785403878733E+03
0.138801167137067E+03
-.245552103718723E+-02

Correction Weights for the Singularity s = ot

k=4

0.176138469558481E+4-01
-.138211834485298E+-02
0.545915011781337E+02
-.117357484549871E+-03
0.150779019932162E+03
-.114778491157932E+03
0.476230959836121E+-02
-.829784263315958E+-01

Correction Weights for the Singularity s = a3}

k=4

0.788957615797699E+01
-.101483910269331E+-03
0.498205235333950E+-03
-.124177860454341E+4-04
0.175109399358045E+04
-.141908515209795E+04
0.617986326801910E+03
-.112327464963600E+-03



k=2
0.120275440902998E+01
-.191590588964576E+01
0.189021521886824E+01
-.677063738252464E+00

k=2
0.245072941794592E+-01
-.671933111554788E+-01
0.775314064392466E+-01
-.298453894632270E+01

k=2
0.184790352839992E+02
-.765330172344763E+-02
0.992955952836217E+02
-.407416133331446E+02

Table 4

k=3
0.159679209113902E+-01
-.749191954692780E+01
0.182610902534004E402
-.210496743900247E+02
0.117997957518642E+-02
-.261608415945115E+-01

Table 5

k=3
0.363848721531386E+01
-.239520591801675E+02
0.653732223792864E+02
-.840421842099929E+02
0.520805019262272E+02
-.125979681306671E+02

Table 6

k=3
0.321040181373839E+-02
-.280780736142061E+-03
0.895220650155513E+03
-.126326771498802E+04
0.841976333390815E+4-03
-.215752550553635E4-03

Correction Weights for the Singularity s = 2t

k=4

0.207566347869413E+01
-.17681779330607 1E+02
0.723376732327415E+02
-.159272316539246E+03
0.207188787576306E+-03
-.158671438914327E+-03
0.660717800591290E+-02
-.115483695626909E+-02

Correction Weights for the Singularity s =-1

k=4

0.538493619088162E+01
-.636859586874130E+-02
0.300979353674521E4-03
-.731168698310276E+03
0.101261655245219E4-04
-.809425283937431E+-03
0.548533467508443E4-03
-.627343688909117E+02

Correction Weights for the Singularity s = P

k=4

0.535441666101165E+02
-.846379842042659E+-03
0.456845469197409E+-04
-.121296416031938E4-05
0.179000593914225E+05
-.150266053430178E+-05
0.673612868399159E+-04
-.125506014574396E+-04
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N e
' Examples of Convergence of Quadrature Rules v
- n log(g) zt 2% 2% (log(2))? -
) log(z) S
X +z~% oV
10 .503E-01 .326E-01 .157E+00 .870E-01 .105E4-00 .246E+00 i
20 412E-03 .478E-03 .189E-01 .121E+00 S90E-02 A177E-01 ey
40 .546E-04 .498E-04 964E-03 .148E-02 .219E-03 .115E-02 £2
80 .102E-04 .506E-05 422E-04 .584E-04 651E-05 722E-04 ek
160 992E-06 .359E-06 .146E-05 .243E-05 434E-07 453E-05 f:: |
320 .803E-07 .233E-07 .359E-08 B79E-07 .180E-07 .283E-06 P
640 .600E-08 .147E-08 958E-08 .159E-08 241E-08 AT7E-07 .
- 1280 425E-09  911E-10  .157E-08  .616E-09  .234E-09  .109E-08
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W ok
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“ Table 8 g
Extended Convergence Results for s(z) = z~ 1% i?\
~ n 10 20 40 80 160 320 Lo
- é .157E+-00 .189E-01 .964E-03 422E-04 .146E-05 .359E-08 bt
n 640 1280 2560 5120 10240 20480 . o
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